ماهنامه مصداق ۰۳ آذر ۱۳۹۴ - 10 سال پیش زمان تقریبی مطالعه: 2 دقیقه
کپی شد!
0

ساختار هواپیما

هواپیماها دارای ساختارهای متفاوتی هستند اما چند چیز در تمام هواپیماها مشترک است: 1- بدنه ،2- بال ،3- مجموعه دم ،4- ارابه فرود ، 5-پیشرانه ،6- بدنه

در بیشتر هواپیماها بدنه نقش اساسی و مشترکی مبنی بر قرار دادن بال، مجموعه دم، ارابهٔ فرود و نیروی پیشرانه در موقعیت و وضعیت مناسب خود ایفا می‌کند. در واقع بدنه رابط بین بخش‌های اصلی دیگر است. اما در برخی هواپیماها مانند بال‌های پرنده، بدنه و بال یکپارچه بوده و مرزی بین آنها وجود ندارد. از وظایف دیگر بدنه جذب شوک‌های وارده از طرف چرخ‌ها در هنگام فرود است. بدنهٔ هواپیما گونه‌های مختلفی دارد که به شرح زیر است:

 

بدنه اسکلتی یا خرپا

بدنهٔ اسکلتی یا خرپا (Truss) در هواپیماهای اولیه تا جنگ جهانی اول بسیار استفاده می‌شد. هم‌اکنون در هواپیماهای دست‌ساز و نیز هواپیماهای مدل از این نوع بدنه استفاده زیادی می‌شود چرا که ساده، سبک و مقاوم بوده و با تیرک‌های چوبی قابل ساخت هستند. در این نوع بدنه اغلب نیروها و تنشهای وارده توسط سازه اصلی تحمل شده و از پوسته برای ایجاد شکل آیرودینامیکی به سازه استفاده می‌شود. سازهٔ اصلی از تیرک‌های طولی، تیرک‌های مورب، قاب‌های عرضی و کابل‌های نگهدارنده تشکیل شده است. برادران رایت که اولین هواپیماهای قابل کنترل را ساختند از این حالت در ساختار بدنهٔ هواپیماهایشان استفاده می‌کردند.

 

بدنه تخم مرغی

در بدنهٔ تخم مرغی (Monocoque) پوستهٔ بدنه، اغلب نیروهای وارده را تحمل نموده و از سازه داخلی مختصری برای ثابت شدن پوسته استفاده می‌شود. معمولاً پوسته این نوع بدنه از جنس مواد کامپوزیت بوده و به صورت دو تکه ساخته می‌شود. بسیاری از هواپیماهای گلایدر، فوق سبک و هواپیماهای شکاری فوق مدرن نیز به این روش تولید شده‌است. بسیاری از هواپیماهای مدل و بدون سرنشین کاربردی نیز ازاین نوع بدنه سود می‌برند.

 

بدنه نیمه تخم مرغی

بدنهٔ نیمه تخم مرغی (Semi-Monocoque) دارای مشخصات و ویژگی‌هایی بین دو نوع فوق بوده که باعث شده اکثر هواپیماهای امروزی از این نوع بدنه استفاده نمایند. تقریباً همه هواپیماهای مسافربری و شکاری دارای این نوع سازه هستند. در بدنه نیمه تخم مرغی نیروها و شوک‌های وارده هم بواسطه سازهٔ داخلی و هم توسط پوسته تحمل می‌شوند. در این ساختار در قسمت زیرین هواپیما یک گودی بوجود می‌آید که باعث می‌شود فشار ناشی از پرواز به آن قسمت و پوشش بدنه تقسیم شود. در این حالت فشار از قسمت پوشش بدنه به شدت کاهش می‌یابد و هواپیما دارای عمری بالاتر خواهد بود.

 

بال

بال هواپیما حساس‌ترین و موثرترین قسمت هواپیما محسوب می‌شود. به همین دلیل در هنگام ساخت بال می‌بایست ظرافت و دقت خاصی به کار گرفته شود. تقریباً تمام نیرویی که هواپیما را به سمت بالا می‌کشاند توسط بال هواپیما ایجاد شده و بدنه نیز که به بال متصل است از حرکت بال پیروی می‌کند. کار بال‌ها افزایش نیروی بالا برنده (Lift) می‌باشد و در گردش هوا بسیار کمک می‌کنند. در طراحی هواپیما محاسبات بسیار گسترده‌ای برای بدست آوردن شکل مناسب بال اعم از سطح مقطع بال (air foil)، طول بال (wing span)، زاویه نصب بال (angle of incidence)، مکان نصب بال به بدنه (dihedral)، زاویه بین بال سمت چپ و بال سمت راست و… صورت می‌گیرد. یک اشتباه کوچک در ساخت بال حتی در یک هواپیمای مدل می‌تواند باعث زمین خوردن و یا انحراف عمده هواپیما در حین پرواز شود.امروزه درصد بالایی از بال هواپیماها مشابه بدنه نیمه تخم‌مرغی (semi monocoque) دارای سازهٔ داخلی کامل و پوستهٔ نسبتاً ضخیم آلومینیومی یا کامپوزیتی می‌باشند که پوسته نیز در تحمل نیروهای وارده به سازه داخلی کمک می‌کند. این نوع بال را در هواپیماهای مسافربری و باربری می‌توان مشاهده نمود.

 

هواپیماهای بال ثابت

بیشتر هواپیماهای امروزی به‌ویژه هواپیماهای مسافری در این دسته جای دارند. منظور از بال ثابت آن است که بال هواپیما (بر خلاف هلیکوپتر) فقط در اثر پیش‌رانش نیروی برآر ایجاد می‌کند. اگرچه بال در بعضی هواپیماها برای جاگیری کمتر یا ملاحظات هواپویشی ممکن است باز و بسته شود ولی این‌گونه هواپیما را نیز دارای بال ثابت می‌شمارند چون باز و بسته شدن بال ایجاد نیروی برآر نمی‌کند.

 

هواپیمای بال متحرک

در بال‌گردها نیروی برآر ناشی از چرخش بال یا پروانه در هوا است. هلی‌کوپتر یا بالگرد شناخته‌شده‌ترین هواپیما با بال متحرک است. هواچرخ نوع دیگری از این‌گونه هواپیما است. بعضی از هواپیماها مثل و-۲۲ آسپری ویژگی‌های بال ثابت و بال متحرک را یکجا دارند. در بال‌ها دو سیستم قابل حرکت وجود دارد که تحت کنترل خلبان هستند:

 

برآافزا:

برآافزا (Flap) برروی بال‌ها وجود دارند و خلبان با استفاده از یک سوئیچ و یا اهرم آن‌ها را به هنگام برخاستن و یا نشستن باز و بسته می‌کند. واحد آن‌ها درجه می‌باشد. حرکتشان به صورت همزمان به سمت پایین و به حالت اولیه است یعنی حرکتی به سمت بالا که بال هواپیما را رد کند ندارند. کار برآافزاها افزایش نیروی بالابرنده (lift) می‌باشند یعنی به هواپیما کمک می‌کنند تا راحت‌تر به سمت بالا و پایین مانور داده و نرم‌تر پرواز کنند. برآافزاها می‌بایست با توجه به شرایط و نیاز در پرواز به میزان معینی باز و بسته شوند و اگر به مقدار زیادی باز و یا بسته شوند می‌توانند در کاهش سرعت هواپیما به شدت تأثیر بگذارند. از برآافزا بیشتر در زمان‌های برخاست و نشست هواپیما که سرعت آن کم است برای جبران کمبود نیروی برآ استفاده می‌شود.

 

شهپر:

شَهپَر (Aileron) در نوک بال‌ها قرار دارند. خلبان با استفاده از فرمان هواپیما آن‌ها را به حرکت در می‌آورد. وظیفهٔ آن‌ها حرکت هواپیما در آسمان به چپ و یا راست می‌باشد. حرکتشان بر خلاف یکدیگر است یعنی زمانیکه شهپر بال چپ بالا می‌رود، شهپر بال راست پایین می‌آید.

 

مجموعه دم

دم هواپیما، کنترل آن و ایجاد تعادل استاتیکی هواپیما را بر عهده دارد. دم هواپیماها نیروی برایی (بالابرنده) تولید نمی‌کند و برخلاف تصور مقدار نیرویی در جهت مخالف هم تولید می‌کند.

در طراحی ساختمان دم عموماً از همان ساختار بال هواپیما تقلید می‌کنند بنابراین دارای همان استخوان بندی و آیرودینامیکی بال است. قسمت‌های اصلی مجموعه دم هواپیما شامل پایدارکنندهٔ افقی (stabilizer horziontal) و پایدارکنندهٔ عمودی (vertical stabilizer) است که وظیفهٔ آن‌ها اولاً تعادل و ثبات هواپیما در هوا و ثانیاً در هدایت هواپیما به جهات راست، چپ، بالا و پایین است.

هر کدام از پایدارکننده‌ها درای دو سکان هستند؛ سکان‌های ثابت و سکان‌های متحرک. سکان‌های ثابت کمک می‌کند تا اگر هواپیما در اثر عوامل خارجی منحرف گردد خود به خود هواپیما میل به برگشت به حالت اولیه رو داشته باشد و سکان‌های متحرک که توسط خود خلبان کنترل می‌شود کمک می‌کنند تا خلبان بتواند به اختیار خود هواپیمای خود رو به سمت چپ و راست و یا بالا و پایین هدایت نماید.

 

پایدارکننده عمودی

پایدارکننده عمودی در بعضی هواپیماها همانند اف۱۴ تامکت به صورت دوتایی و در هواپیماهایی مانند بوئینگ ۷۴۷ یا اف ۴ به صورت تکی وجود دارد.

به قسمت متحرک پایدارکنندهٔ عمودی رادر (Rudder) می‌گویند. خلبان به وسیلهٔ پدال‌هایی که در زیرپایش قرار دارد رادر را حرکت می‌دهد. حرکت رادر و تأثیر آن روی هواپیما به این صورت است که با حرکت رادر به سمت چپ، هوایی که از سمت چپ پایدارکنندهٔ عمودی به رادر برخورد می‌کند، آن را فشرده می‌کند و به آن اعمال نیرو می‌کند و باعث می‌شود که قسمت دم هواپیما به سمت راست حرکت کند و این گشتاور ایجاد شده حول محور عمودی باعث چرخش نوک هواپیما به سمت چپ می‌گردد. در اصل رادر کمک می‌کند هواپیما بدون تغییر ارتفاع به چپ و راست برود.

 

پایدارکنندهٔ افقی

شکل ظاهری و ساخت درونی پایدارکنندهٔ افقی تقریباً شبیه ساختمان بال است با این تفاوت که بال همیشه ثابت است در حالیکه پایدارکنندهٔ افقی در بعضی هواپیماها ممکن است متحرک باشد و حول محور طولی خود بچرخد. همچننن بال‌ها همیشه به بدنه متصل هسستند در حالیکه پایدارکنندهٔ افقی را هم به انتهای بدنه و هم بالای دم عمودی متصل می‌کنند. سکان افقی در حالت معمولی یا خنثی تقریباً موازی با سطح زمین است در حال پرواز از بالا و پایین رفتن غیر ضروری نوک هواپیما جلوگیری می‌کنند.

پایدارکننده افقی که از آن به عنوان دم افقی هواپیما نیز یاد می‌شود، سطحی برا است که در انتهای هواپیما قرار گرفته است. یک هواپیما برای پرواز امن باید از نظر طولی متعادل باشد. معنی این حرف آن است که برآیند کل نیروهایی که به یک هواپیما وارد می شود نباید حول مرکز جرم آن، گشتاور ایجاد کند. بدون وجود پایدارکنندهٔ افقی، تنها با یک ترکیب خاص از سرعت و مرکز جرم هواپیما، تعادل هواپیما حفظ می‌شود. پایدارکنندهٔ افقی یک نیروی متعادل کننده اعمال می‌کند که باعث می‌شود در صورت تغییر محل مرکز جرم و تغییر سرعت، هواپیما همچنان بتواند تعادل خود را حفظ کند. از آنجایی که پایدارکنندهٔ افقی در فاصله به نسبت زیادی از مرکز جرم قرار دارد، مقدار کمی از نیروی برآ نیز می‌تواند گشتاور بزرگی در مرکز جرم ایجاد کند. چنانچه هواپیمایی بال داشته یاشد ولی فاقد دم باشد، از نظر جانبی متعادل است و تنها از نظر طولی با ناپایداری مواجه می‌شود. یعنی هر آشوبی (ازجمله تندباد) که تمایل به بالا بردن دماغه هواپیما داشته باشد، یک گشتاور بالابرنده دماغه ایجاد می‌کند که آن خود تمایل به بیشتر بالابردن دماغه خواهد داشت. با اضافه کردن پایدارکننده افقی به انتهای هواپیما، یک گشتاور پایین آورنده در دماغه ایجاد می‌شود؛ بنابراین پایدارکنندهٔ افقی، خاصیت نامتعادل‌کنندگی بال را بی‌اثر می‌کند و هواپیما را از نظر طولی متعادل می‌کند. یک هواپیمای متعادل، تحت تأثیر گشتاور حاصل از عملیات سرعت‌گیری یا ارتفاع‌گیری قرار نمی‌گیرد.

پایدارکنندهٔ افقی نیز همانند پایدارکنندهٔ عمودی از دو سکان افقی ثابت و متحرک تشکیل شده‌است:

سطح ثابت یا سکان ایستاور (Horizonal Stabilizer)

سطح متحرک یا سکان بالابر (Elevator)

بالابر (elevator) سطح متحرکی است که به پایدارکنندهٔ افقی لولا شده و دارای ترکیبی همانند شهپرها می‌باشد. با این حال بالابرها برخلاف شهپرها که خلاف جهت هم حرکت می‌کند، در جهت موافق هم عمل می کنند. بالابر با حرکت خود باعث می‌شود تا دم هواپیما به بالا و پایین برود و به تبع آن نوک هواپیما نیز بالا و پایین برود.

کانارد

کانارد (canard) نوعی از دم هواپیما که در قسمت جلوی بدنه نصب می‌شود و بدون ایجاد نیروی بالابر مخالف می‌تواند تعادل را ایجاد کند و در واقع نیرویی در دم این هواپیماها تلف نمی‌شود و هم بال و هم دم نیروی برآ تولید می‌کنند. کارکرد کانارد شبیه به کارکرد دم هواپیماست و هر دو نوعی پایدارکننده افقی محسوب می‌شوند. بدلیل سخت بودن طراحی کانارد و پیچیده بودن رفتار هواپیماهایی که از کانارد استفاده می‌کنند کانارد در طراحی هواپیما متداول نیست.

 

ارابه فرود

ارابهٔ فرود (Landing gear) سازه‌ای است که هواپیما در هنگام توقف یا حرکت بر روی زمین بر آن تکیه دارد. ارابه‌های فرود یکی از قسمت‌های مهم هواپیما هستند که کار جذب انرژی ناشی از فرود هواپیما را نیز برعهده دارند. در مراحل طراحی یک هواپیما، طراحی ارابهٔ فرود معمولاً پس از طراحی بدنه و چیدمان اجزاء هواپیما و محل مرکز ثقل هواپیما است.

شایع‌ترین و مورد استفاده‌ترین نوع ارابهٔ فرود نوع چرخ‌دار آن است که حداقل سه چرخ داشته باشد. این نوع دارای دو چرخ اصلی در عقب مرکز ثقل و یک چرخ کمک در جلوی مرکز ثقل است. اکثر هواپیماهای مسافری و همین‌طور جنگنده‌هایی همانند اف-۱۶ ایالات متحده و یا میگ-۲۹ روسیه دارای ارابهٔ فرود سه چرخی هستند اما در برخی هواپیماها اسکی (برای روی برف) و محفظه هوا (برای روی آب) نیز بجای چرخ بکار می‌رود. در بیشتر هواپیماها ارابه فرود پس از برخاستن هواپیما جمع می‌شود تا از نیروی پسار بکاهد به عبارتی دیگر برای آن که هواپیما سرعتش زیاد شود، باید کمترین مقاومت را در برابر هوا داشته باشد یعنی باید به بیشترین حالت آیرودینامیکی ممکن برسد. اگر چرخ‌ها جمع نشوند یک مقاومت جدی در برابر باد ایجاد خواهد شد و مانند ترمز باعث کاهش سرعت می‌شوند.

چرخ‌های هواپیما مانند یک خودرو، دارای ترمز هستند. اما این ترمزها وارد عمل نمی‌شوند مگر زمانی که سرعت هواپیما بسیار کم باشد. خلبان زمانی از آن‌ها استفاده می‌کند که بخواهد به‌طور کامل هواپیما را جلوی ترمینال متوقف کند.

 

پیشرانه

هواپیما برای آنکه بتواند پرواز کند باید نیروی بالابرنده‌اش (lift) را بیشتر کند که این اتفاق با افزایش سرعت هواپیما می‌افتد. افزایس سرعت هواپیما توسط موتور آن است. هواپیماهای نخستین از موتورهای پیستونی استفاده می‌کردند که مکانیزمی همانند موتورهای خودرو داشت اما بعد از چند سال موتورهای جت تولید شدند و هم‌اکنون از آن‌ها در هواپیماها استفاده می‌شود. انواع موتورهای جت عبارتند از:

جت (Jet)

توربوجت (TurboJet)

توربوفن (TurboFan)

توربوپراپ (TurboProp)

پالس‌جت (PulseJet)

رم‌جت (RamJet)

توربو رم‌جت (TurboRamJet)

اسکرم‌جت (ScramJet)

هواپیماهای جت سرعتی بین ۷۰۰ تا ۹۰۰ کیلومتر در ساعت (۴۳۰ تا ۵۶۰ مایل در ساعت) دارند. همچنین برای برخاستن از زمین و فرود به ترتیب سرعتی در حدود ۱۵۰ تا ۲۵۰ کیلومتر در ساعت (۹۳ تا ۱۵۵ مایل در ساعت) نیاز دارند.

نویسنده
M-Moradi
مطالب مرتبط
نظرات